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Generalizations of classical integrable nonholonomic rigid
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Abstract. Nonholonomic systems with an invariant measure: the Suslov, Chaplygin and
Veselov–Veselova problem are considered. New families of integrable potential perturbations of
these non-Hamiltonian systems are constructed. We also obtain a similar result for a classical
Hamiltonian system of the motion of a rigid body fixed at a point.

1. Introduction

One of the common classifications of mechanical systems to holonomic (with integrable
constraints) and nonholonomic (with nonintegrable constraints) was provided by Herz.
He noticed important differences between these situations: equations of motion in
nonholonomic cases obtained from the Lagrange–D’Alembert principle were not equivalent
to those derived from the variational principle, and nonholonomic systems are not
Hamiltonian. As is well known, a Hamiltonian system preserves the standard measure.
If, in (m = 2n)-dimensional phase space, we haven = m/2 functionally independent
integrals in involution, then the Hamiltonian system is completely integrable. In general, a
nonholonomic system withk nonholonomic constraints does not have an invariant measure
in (m − k)-dimensional phase space, and one needsm − k − 1 functionally independent
integrals for complete integrability.

In this paper, we consider nonholonomic systems with an invariant measure and,
according to the Jacobi theorem for the integrability by quadratures, we need onlym−k−2
independent integrals [1]. We have constructed families of integrable perturbations for a few
known integrable nonholonomic problems: the Suslov problem [2], the Chaplygin problem
[3, 4] and the Veselov and Veselova case [5]. The famous integrable perturbations found
by Kharlamova-Zabelina, Kozlov and Veselov–Veselova are special cases of our solutions.
Also, we have obtained new integrable perturbations of a rigid body motion around a fixed
point, even without a nonholonomic constraint.

The method we use here is a modification of that which we have used for perturbating
the Jacobi problem for geodesics on the ellipsoid [6], and billiard systems [7–9]. The basic
idea (due to Kozlov [10]) is the following. Suppose that we have an integrable natural
mechanical system with integralsFi(ẋ, x), i = 1, . . . , k. Is it possible to add a potential
V = V (x) such that the new system has integralsF̃i(ẋ, x) = Fi + Ui(x), whereUi(x) are
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functions depending only onx? The answer gives a system of partial differential equations
(PDEs) onV . We are looking for solutions in the form of Laurent polynomials.

Let us note that some other generalizations of the considered classical nonholonomic
rigid body systems could be found in [5, 11, 12].

2. The Suslov problem

The Suslov problem describes the rotation of a rigid body fixed at a point subjected to the
constraint〈n, ω〉 = 0, whereω is angular velocity andn is a constant vector in a moving
frame [2]. From the Frobenius theorem it follows that

D = {〈n, ω〉 = f (φ̇, ψ̇, θ̇ , φ, ψ, θ) = 0} ⊂ T SO(3){φ̇, ψ̇, θ̇ , φ, ψ, θ}
is the nonintegrable distribution in the tangent bundle of the rigid body configuration space
SO(3) (φ,ψ, θ are Euler’s angles).

We will treat the rigid body dynamics in the first-order Euler–Poisson equations rather
than in the second-order Euler–Lagrange equations on theSO(3) (derivation of the equations
can be found, for example, in [1, 2]).

Let {α, β, γ } be the base of the fixed reference frame. Let a rigid body be fixed
at the pointO = (0, 0, 0), and placed in the potential force field with the potential
v = v(x1, x2, x3). The total potential energy of the rigid body is

V =
∫
B

v(〈r, α〉, 〈r, β〉, 〈r, γ 〉) dm(r) = V (α, β, γ )
wherer is the radius vector of the point of the rigid body according to the fixed point. We
shall consider potentials which depend only onγ : V = V (γ ) (for example, in the case of
a gravity fieldv = gx3, we haveV (γ ) = constant〈rC, γ 〉, whererC is the radius vector of
the mass centre).

The equations of the motion in the moving frame are [1, 13]

I ω̇ = Iω × ω + γ × ∂V
∂γ
+ λn γ̇ = γ × ω, 〈n, ω〉 = 0 (1)

whereI is the inertia tensor(I = I t ). The Lagrange multiplierλ is determined from the
constraint

λ = 1

〈I−1n, n〉
〈
I−1n, ω × Iω + ∂V

∂γ
× γ

〉
.

There are always two independent integrals of equations (1):

F1 = 〈Iω, ω〉
2
+ V (γ ) F2 = 〈γ, γ 〉.

We will takeF2 = 〈γ, γ 〉 = 1 (according to the description of the physical model we have
given). Thus, the phase space is

M = {(ω, γ ) ∈ R3{ω} × R3{γ }|〈n, ω〉 = 0, 〈γ, γ 〉 = 1}. (2)

If V = 0, then equations (1) form a closed system inR3{ω}, and for generaln they do not
have an invariant measure. This problem was solved by Suslov.

The system (1) preserves the standard measure inM if n is an eigenvector of the inertia
operator. Thus, in what follows we will assume thatn is an eigenvector of the operatorI .
Then, for the integrability, we need one more integral. We can choose the base{e1, e2, e3}
of the moving frame such thatI = diag(I1, I2, I3) andn = e3.

The known integrable cases are as follows.
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(i) The Kharlamova-Zabelina case [1, 14] whereV (γ ) = 〈b, γ 〉, with b such that
〈n, b〉 = 0. ThenF3 = 〈Iω, b〉.

(ii) The Lagrange case (noted by Kozlov [13]) whenI1 = I2, potential isV = 〈b, γ 〉,
whereb = εn. The integral isF3 = 〈Iω, γ 〉.

(iii) The Klebsh–Tisserand–Kozlov case [1, 13] withV (γ ) = ε
2〈Iγ, γ 〉 and F3 =

1
2〈Iω, Iω〉 − 1

2〈Aγ, γ 〉, whereA = εI−1 detI .

Remark 1.Let us note that in case (ii) the Lagrange multiplier isλ = 0, so it is actually a
holonomic system. It remains integrable if the constraint is〈n, ω〉 = c = constant.

Remark 2.The physical meaning ofV (γ ) = ε
2〈Iγ, γ 〉 is that it represents the potential of

a rigid body in a central Newtonian force field to within O(r4/R4), wherer is the typical
body dimension andR is a distance from the body to the centre of the attraction [1].

We are looking for potentialsV (γ ) for which there exists an integral of the system (1)
of the form

F̃3 = 1
2〈Iω, Iω〉 + F(γ )

whereF depends only onγ .
If I1 = I2 the integralF̃3 and the energy integral are dependent, so in this way we

cannot get new integrable cases.

From ˙̃F 3 = 0 we have

ω1

(
I1γ2

∂V

∂γ3
− I1γ3

∂V

∂γ2
+ γ3

∂F

∂γ2
− γ2

∂F

∂γ3

)
−ω2

(
I2γ1

∂V

∂γ3
− I2γ3

∂V

∂γ1
+ γ3

∂F

∂γ1
− γ1

∂F

∂γ3

)
= 0.

It gives us two equations:

I1

(
γ2
∂V

∂γ3
− γ3

∂V

∂γ2

)
= γ2

∂F

∂γ3
− γ3

∂F

∂γ2

I2

(
γ1
∂V

∂γ3
− γ3

∂V

∂γ1

)
= γ1

∂F

∂γ3
− γ3

∂F

∂γ1
.

(3)

Introducingc = (F − I1V )/(I2− I1), d = (F − I2V )/(I2− I1) equations (3) reduce to

∂c

∂γ2
γ3− ∂c

∂γ3
γ2 = 0

∂d

∂γ1
γ3− ∂d

∂γ3
γ1 = 0. (4)

The general solution of the system (4) isc = c(γ1, γ
2
2 + γ 2

3 ), d = d(γ2, γ
2
1 + γ 2

3 ). Thus we
have the following theorem.

Theorem 1.If In = I3n andI1 6= I2 then equations (1) of the Suslov problem are integrable
for potentials:

V (γ ) = c(γ1, γ
2
2 + γ 2

3 )− d(γ2, γ
2
1 + γ 2

3 )

wherec, d are arbitrary functions of two variables. The corresponding third integral is

F̃3(ω, γ ) = 1
2〈Iω, Iω〉 + I2c(γ1, γ

2
2 + γ 2

3 )− I1d(γ2, γ
2
1 + γ 2

3 ).

The polynomial solutions of the system (3) are described in the following.
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Corollary 1. For I1 6= I2, the base of the polynomial solutions of the linear PDE system (3)
is given by the following homogeneous polynomials:

V2L(γ ) =
∑

m+n+k=L
m,n,k>0

((
n+ k
k

)
cn+k −

(
m+ k
k

)
dm+k

)
γ 2m

1 γ 2n
2 γ 2k

3

V2L+1(γ ) =
∑

m+n+k=L
m,n,k>0

(
γ1

(
n+ k
k

)
cn+k − γ2

(
m+ k
k

)
dm+k

)
γ 2m

1 γ 2n
2 γ 2k

3

(5)

wherec0, . . . , cL, d0, . . . , dL are arbitrary constants, and the correspondingFs are

F2L(γ ) =
∑

m+n+k=L
m,n,k>0

(
I2

(
n+ k
k

)
cn+k − I1

(
m+ k
k

)
dm+k

)
γ 2m

1 γ 2n
2 γ 2k

3

F2L+1(γ ) =
∑

m+n+k=L
m,n,k>0

(
I2γ1

(
n+ k
k

)
cn+k − I1γ2

(
m+ k
k

)
dm+k

)
γ 2m

1 γ 2n
2 γ 2k

3 .

(6)

Examples.
(i) For N = 1, we have the Kharlamova-Zabelina case:V1(γ ) = b1γ1+ b2γ2 = 〈b, γ 〉,

and〈n, b〉 = 0.
(ii) For N = 2, the potential isV (γ ) = 1

2(a1γ
2
1 + a2γ

2
2 + a3γ

2
3 ), and

F̃3(ω, γ ) = 1
2〈Iω, Iω〉 − 1

2(I2a3γ
2
1 + (I2a1− I1a2+ I1a3)γ

2
2 + I2a1γ

2
3 ).

By choosinga1 = εI1, a2 = εI2, a3 = εI3, we get the Klebsh–Tisserand–Kozlov case.
(iii) Solutions of Laurent type are, for example,V (γ ) = cγ m1 − dγ n2 , m, n < 0.

3. The Suslov problem with gyroscopic force

There is one new integrable case of the Suslov problem. Including the gyroscopic force,
with the momentumεγ × ω, equations (1) become

I ω̇ = Iω × ω + γ × ∂V
∂γ
+ εγ × ω + λn γ̇ = γ × ω, 〈n, ω〉 = 0

λ = 1

〈I−1n, n〉
〈
I−1n, ω × (Iω + εγ )+ ∂V

∂γ
× γ

〉
.

(7)

They describe, for example, the motion of a rigid body with the magnetic momentum−εω
in an additional homogeneous magnetic field in the direction ofγ . Since a gyroscopic force
is conservative,F1 remains the first integral.

Theorem 2.If In = Ikn then the Suslov problem with the gyroscopic force (7) is integrable
for potentialsV = 0, V (γ ) = 〈b, γ 〉, where〈n, b〉 = 0 andV (γ ) = 1

2(a1γ
2
1 +a2γ

2
2 +a3γ

2
3 ).

Especially, forV = 0, all trajectories are closed.

Proof. As for (1), it could be proved that ifn is an eigenvector of the inertia tensorI ,
then equations (7) preserve the standard measure inM (defined by (2)). Let, for example,
In = I3n.
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(1) V = 0. Then we have two supplementary integralsF3 = I1ω1 − εγ1 = c1 and
F4 = I2ω2 − εγ2 = c2. Let 2F1 = 〈Iω, ω〉 + 2V (γ ) = h. By integration we obtain the
period of the closed trajectories

T (h, c1, c2) =
√
I1I2

∫ 2π

0

dϕ√
ε2− (c1−

√
I1h cosϕ)2− (c2−

√
I2h sinϕ)2

.

(2) V (γ ) = 〈b, γ 〉 = b1γ1+b2γ2. The third integral isF3 = b1(I1ω1−εγ1)+b2(I2ω2−
εγ2).

(3) V (γ ) = 1
2(a1γ

2
1 + a2γ

2
2 + a3γ

2
3 ). The additional independent integral is

F3 = (I 2
1 (a3− a1)+ I1ε

2)ω2
1 + (I 2

2 (a3− a2)+ I2ε
2)ω2

2 − 2εI1(a3− a1)ω1γ1

−2εI2(a3− a2)ω2γ2− (a3− a1)(a3− a2)(I2γ
2
1 + I1γ

2
2 ).

�

4. Perturbations of the Chaplygin problem

We are interested in integrable potential perturbations of the Chaplygin problem of a
balanced, dynamically asymmetric ball(I1 6= I2 6= I3) rolling on a rough surface. The
nonholonomic constraint is given by the condition that the velocity of the point of contact
is equal to zero. The equations of the motion in a potential field with potentialV (γ ) are
[1, 13]:

k̇ + ω × k = γ × ∂V
∂γ

γ̇ = γ × ω (8)

wherek = Iω+ma2γ × (ω× γ ) is the angular momentum of the ball relative to the point
of contact,a is the radius,m is the mass andI is the inertia tensor of the ball relative to
its centre. Equations (8) have the invariant measure with the density

M = 1√
(ma2)−1− 〈γ, (I +ma2E)−1γ 〉

whereE is the identity matrix. They always possess the following three integrals

F1 = 1
2〈k, ω〉 + V (γ ) F2 = 〈k, γ 〉 F3 = 〈γ, γ 〉(= 1).

Chaplygin considered the motion without the potential force. He found the fourth integral
F4 = 〈k, k〉, and solved the problem by quadratures [3].

Kozlov generalized the Chaplygin problem by adding the potentialV = ε
2〈Iγ, γ 〉.

Then the fourth integral isF4 = 〈k, k〉 − 〈Aγ, γ 〉, where A is a diagonal matrix
with diagonal elementsA1 = ε(I2 + ma2)(I3 + ma2), A2 = ε(I1 + ma2)(I3 + ma2),
A3 = ε(I1+ma2)(I2+ma2).

We are looking for the fourth integral, using the same method as we did in section 2,
in the form

F̃4 = 1
2〈k, k〉 + F(γ ).
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The condition ˙̃F4 = 0 is equivalent to the following system:

K1

(
∂V

∂γ3
γ2− ∂V

∂γ2
γ3

)
= ∂F

∂γ3
γ2− ∂F

∂γ2
γ3

K2

(
∂V

∂γ1
γ3− ∂V

∂γ3
γ1

)
= ∂F

∂γ1
γ3− ∂F

∂γ3
γ1

K3

(
∂V

∂γ2
γ1− ∂V

∂γ1
γ2

)
= ∂F

∂γ2
γ1− ∂F

∂γ1
γ2

(9)

whereKi = Ii +ma2, i = 1, 2, 3. The first two equations in (9) are the same as equations
(3) in the Suslov problem. We shall derive polynomial solutions. From corollary 1 we have
that any polynomial solution should be of even degree inγ3. Using the symmetry inγ1, γ2

andγ3 of (9), we also obtain an even degree inγ1, γ2.
By substitutingV2L from (5) andF2L from (6) to the third equation, we get conditions

on c0, . . . , cL, d0, . . . , dL:

(I3− I2)(m+ 1)

(
n+ k − 1

k

)
cn+k−1+ (I1− I3)(m+ 1)

(
m+ k + 1

k

)
dm+k+1

+n(I3− I1)

(
m+ k
k

)
dm+k + n(I2− I3)

(
n+ k
k

)
cn+k = 0

16 n 6 L 06 m, k 6 L n+m+ k = L. (10)

The system (10) consists ofL(L + 1)/2 equations with 2L + 2 unknown variables. Let(
L−1
−1

) = 0.

Lemma 1.The rank of the system (10) is 2L − 1. The general solution depends on three
independent parametersA, B, C:

cL−i =
(
L

i

)
(1− i)(I1− I3)A+

(
L− 1
i − 1

)
(I1− I3)B

di =
(
L

i

)
(I3− I2)iA+

(
L− 1
i − 1

)
(I2− I3)B +

(
L

i

)
C.

(11)

Proof. There are 2L − 1 independent equations in (10); for example, the equations with
indexes(m, n, k) = (0, L− i, i) and(m, n, k) = (i, L− i, 0), wherei = 0, . . . , L− 1. The
solution of the subsystem is given by (11). One can prove that this is the general solution
of (10) by substitution of (11) in to the rest of the equations. �

From lemma 1 and the previous consideration we have the following.

Theorem 3.Equations (8) of the Chaplygin problem, forI1 6= I2 6= I3, are integrable for
potentialsV =∑L aLV2L(γ |AL,BL,CL), where:

V2L =
∑

m+n+k=L
m,n,k>0

((
n+ k
k

)
cn+k −

(
m+ k
k

)
dm+k

)
γ 2m

1 γ 2n
2 γ 2k

3 . (12)

The corresponding fourth integral is̃F4 = 1
2〈k, k〉 +

∑
L aLF2L(γ |AL,BL,CL), where:

F2L =
∑

m+n+k=L
m,n,k>0

(
K2

(
n+ k
k

)
cn+k −K1

(
m+ k
k

)
dm+k

)
γ 2m

1 γ 2n
2 γ 2k

3 .

cs andds depend onAL,BL,CL by (11).
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Examples.
(i) For N = 2 the solution is the Klebsh potential

V2(γ ) = a1γ
2
1 + a2γ

2
2 + a3γ

2
3 a1(I2− I3)+ a2(I3− I1)+ a3(I1− I2) = 0.

(ii) For N = 4 the new integrable potential isV4(γ ) =
∑

i+j+k=2 a2i2j2kγ
2i
1 γ

2j
2 γ 2k

3 ,

a400= c0− d2 = (2I2− I3− I1)A+ (I1− I2)B − C
a040= c2− d0 = (I1− I3)A− C
a004= c2− d2 = (I1+ 2I2− 3I3)A+ (I3− I2)B − C
a220= c1− d1 = 2(I2− I3)A+ (I1− I2)B − 2C

a202= c1− 2d2 = 4(I2− I3)A+ (I1− 2I2+ I3)B − 2C

a022= 2c2− d1 = 2(I1+ I2− 2I3)A+ (I3− I2)B − 2C.

Note. (Rolling of a dynamically symmetric ball.)The general solution of (9) forI1 6= I2 =
I3 is V = V (γ1, γ

2
2 + γ 2

3 ), F = K3V . This fact simply implies the integrability of the
following two problems. The first one, which is solved by Chaplygin [4], is a symmetric
but nonbalanced ball, with the centre of the mass on the axis of dynamical symmetry,
rolling on a horizontal plane in a gravitational field (this corresponds to equations (8) for
V (γ ) = εγ1). The second is the motion of that ball under the influence of a potential, which
is invariant under rotations about the axis of dynamical symmetry. Note that the constraint
is not invariant under the rotations.

In this case, the perturbed system could be easily solved by quadratures. For the fourth
integral we can take

J4 = F̃4−K3F1 = 1
2〈k, k −K3ω〉

for all potentialsV (γ1, γ
2
2 + γ 2

3 ). Simplifying J4 we can get the equivalent integral:

J̃4 = ω2
1 + ma2(I1−I3)

K1I3
ω2

1γ
2
1 . Let, for example,α = I1 − I3 > 0. Let β2 = ma2α/K1I3.

On the invariant surface

T = {(ω, γ ) ∈ R6|F1 = h, F2 = c, F3 = 1, J̃4 = d2}
we can introduce variablesu andv by the formulae

ω1 = d cosu γ1 = β−1 tanu ω2 = R(u) cosv ω3 = R(u) sinv (13)

where R(u)2 = 1
K3
(2h + ma2P(u)2 − 2V (u) − K1d

2 cos2 u), P(u) = c
I3
− αd

I3β
sinu,

V (u) = V (β−1 tanu, 1− β−2 tan2 u). From the first equation forγ (8), we obtain

I 2
3 u̇

2 = I 2
3 cos4 uR(u)2(β2− tan2 u)− cos4 u(I1d sinu− cβ)2 (14)

Thus, we can getu = u(t). From the second and the third equation fork (8), it follows
that

γ2 = K3(Mω̇2−Nω̇3)+ αω1(Mω3+Nω2)

γ3 = K3(Mω̇3+Nω̇2)+ αω1(Nω3−Mω2)
(15)

whereM = ma2Ṗ /1, N = β cos2 u∂uV /1, 1 = m2a4Ṗ 2+ (β cos2 u∂uV )2 are known
functions of time. By substituting (15) in toF2 = c we get

v̇ = αd

K3
cosu+ MṘ

NR
+ I1d

I3βK3

sinu

NR2
− c

I3K3

1

NR2
. (16)

Finally, from (13), (15) and (16) we can findω(t) andγ (t).
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5. Connection with other rigid body systems

Veselov and Veselova considered the rotation of a rigid body fixed at a point with the
nonholonomic constraint〈ω, γ 〉 = 0. The equations of the motion are

I ω̇ = Iω × ω + γ × ∂V
∂γ
+ λγ γ̇ = γ × ω, 〈γ, ω〉 = 0. (17)

They showed that the system had the invariant measure with densityM =
√
〈I−1γ, γ 〉 and

gave several integrable cases [5].
It is very interesting that this method could be used for the Veselov and Veselova

problem, as well as for the motion of a rigid body fixed at a point without nonholonomic
constraint:

I ω̇ = Iω × ω + γ × ∂V
∂γ

γ̇ = γ × ω. (18)

It can be proved.

Theorem 4.Let there beI1 6= I2 6= I3. The Euler–Poisson equations (18) and the Veselov–
Veselova problem (17) are integrable for potentials (12).

Another construction of the integrable perturbations of the motion of a rigid body
fixed at a point (18) is given in [15]. Bogoyavlenski proved the integrabilty for arbitrary
quadratic potential. He also connected this system, in the case of fixed values of the integral
〈Iω, γ 〉 = 0, with integrable systems on the ellipsoid. By the use of the Hamilton–Jacobi
method he found, for〈Iω, γ 〉 = 0, the following integrable potentials:

V (γ ) = σ2

(
c1+

∑
N>1

N∑
k=0

(−1)kcN+k+1

(
N

k

)
σN−k1 σ k2

)
(19)

whereσ1 = γ 2
1
I1
+ γ 2

2
I2
+ γ 2

3
I3
− (I−1

1 + I−1
2 + I−1

3 ), σ2 = (I1I2I3)
−1(I1γ

2
1 + I2γ

2
2 + I3γ

2
3 ).

Connections between our class of solutions and Bogoyavlenski’s class is given by what
follows.

Theorem 5.Intersection of the families (19) and (12) consists of the Klebsh–Tisserand
potentialV = c(I1γ

2
1 + I2γ

2
2 + I3γ

2
3 ).

Proof. From (9), using algebraic calculations, we can obtain the equation

(I1− I2)γ1γ2
∂V

∂γ3
+ (I3− I1)γ3γ1

∂V

∂γ2
+ (I2− I3)γ2γ3

∂V

∂γ1
= 0. (20)

Since (20) is a consequence of (9), all potentials (12) are solutions of (20). On the other
hand, from family (19), only the Klebsh–Tisserand potential (c1 6= 0, ci = 0, i > 1) satisfies
equation (20). �

6. Summary

Finally, we list the new integrable systems we have obtained in this paper.
The family of integrable potential perturbations parametrized by a pair of two arbitrary

functions of the Suslov problem have been constructed. Well known systems of Kharlamova-
Zabelina and Kozlov are special cases. Starting from the Suslov, Kharlamova-Zabelina and
Kozlov cases, we have obtained new integrable systems by adding gyroscopic force.
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The integrability of the Chaplygin problem in the caseI1 6= I2 = I3 perturbed with
V = V (γ1, γ

2
2 + γ 2

3 ) was shown. In this case the additional fourth-degree integral does not
follow from the symmetry.

In the case of the dynamical asymmetryI1 6= I2 6= I3, an infinite-dimensional family
of polynomial perturbations of the Chaplygin problem were derived. The same class of
potentials serves as integrable perturbations of the classical Euler’s case of the rotations of
a rigid body fixed at a point, as well for the Veselov–Veselova problem. Until now, the
Klebch–Tisserand potential and Bogoyavlenski’s quadratic potential for the Euler’s case,
were the only known integrable potentials of these well known problems.
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